Hodge Laplacians on graphs
نویسنده
چکیده
This is an elementary introduction to the Hodge Laplacian on a graph, a higher-order generalization of the graph Laplacian. We will discuss basic properties including cohomology and Hodge theory. At the end we will also discuss the nonlinear Laplacian on a graph, a nonlinear generalization of the graph Laplacian as its name implies. These generalized Laplacians will be constructed out of coboundary operators, i.e., discrete analogues of exterior derivatives. The main feature of our approach is simplicity — this article requires only knowledge of linear algebra and graph theory.
منابع مشابه
Introduction to Hodge Theory
This course will present the basics of Hodge theory aiming to familiarize students with an important technique in complex and algebraic geometry. We start by reviewing complex manifolds, Kahler manifolds and the de Rham theorems. We then introduce Laplacians and establish the connection between harmonic forms and cohomology. The main theorems are then detailed: the Hodge decomposition and the L...
متن کاملHodge Theory and Symplectic Boundary Conditions
We study symplectic Laplacians on compact symplectic manifolds with boundary. These Laplacians are associated with symplectic cohomologies of differential forms and can be of fourth-order. We introduce several natural boundary conditions on differential forms and use them to establish Hodge theory by proving various form decomposition and also isomorphisms between the symplectic cohomologies an...
متن کاملHigh-Ordered Random Walks and Generalized Laplacians on Hypergraphs
Despite of the extreme success of the spectral graph theory, there are relatively few papers applying spectral analysis to hypergraphs. Chung first introduced Laplacians for regular hypergraphs and showed some useful applications. Other researchers treated hypergraphs as weighted graphs and then studied the Laplacians of the corresponding weighted graphs. In this paper, we aim to unify these ve...
متن کاملClifford Bundles: a Unifying Framework for Images(videos), Vector Fields and Orthonormal Frame Fields Regularization
The aim of this paper is to present a new framework for regularization by diffusion. The methods we develop in the sequel can be used to smooth nD images, nD videos, vector fields and orthonormal frame fields in any dimension.1 From a mathematical viewpoint, we deal with vector bundles over Riemannian manifolds and socalled generalized Laplacians. Sections are regularized from heat equations as...
متن کاملEigenvalue Bracketing for Discrete and Metric Graphs
We develop eigenvalue estimates for the Laplacians on discrete and metric graphs using different types of boundary conditions at the vertices of the metric graph. Via an explicit correspondence of the equilateral metric and discrete graph spectrum (also in the “exceptional” values of the metric graph corresponding to the Dirichlet spectrum) we carry over these estimates from the metric graph La...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1507.05379 شماره
صفحات -
تاریخ انتشار 2015